Suggested Solution to Quiz 1

Feb 18, 2016

- 1. (5 points) For each of the following equations, state the order, type and whether it is nonlinear, linear inhomogeneous, or linear homogeneous:
 - (a) $\partial_t u \partial_x^2 u + 1 = 0$
 - (b) $\partial_t^2 u \partial_x^2 u + u^2 = 0$
 - (c) $\partial^2_{xy} u = \sin(4x)$
 - (d) $\partial_x^2 u + \partial_{xy}^2 u + \partial_y^2 u = 0$

Solution:

- (a) 2nd order(0.25points); parabolic equation(0.5points); linear inhomogeneous(0.5points).
- (b) 2nd order(0.25points); hyperbolic equation(0.5points); nonlinear(0.5points)
- (c) 2nd order(0.25points); hyperbolic equation(0.5points); linear inhomogeneous(0.5points).
- (d) 2nd order(0.25points); elliptic equation(0.5points); linear homogeneous(0.5points).
- 2. (5 points) Solve the equation $\partial_x u + x \partial_y u = 0$ with the following two conditions:
 - (a) $u(0,y) = y^2$.
 - (b) $u(x,0) = x^2$

Solution: The characteristic curves satisfy the ODE:

$$\frac{dx}{1} = \frac{dy}{x}$$

Hence the characteristic curves are

$$y = \frac{1}{2}x^2 + C \quad (1\text{point})$$

Therefore, the general solution is

$$u(x,y) = f(y - \frac{1}{2}x^2) \quad (1\text{point})$$

where f is an arbitrary function.

- (a) By $u(0,y) = y^2$, we have $u(0,y) = f(y) = y^2$. Therefore $u(x,y) = (y \frac{1}{2}x^2)^2$ on \mathbb{R}^2 . (1 point)
- (b) By $u(x,0) = x^2$, we have $u(x,0) = f(-\frac{1}{2}x^2) = x^2$ which implies f(z) = -2z. Therefore $u(x,y) = -2(y \frac{1}{2}x^2) = x^2 2y$ (1 point) on the domain $\{(x,y) : y \frac{1}{2}x^2 \le 0\}$ (1 point). On the domain $\{(x,y) : y \frac{1}{2}x^2 > 0\}$, the solution of u(x,y) can not be determined uniquely.

Remark: When u(0, y) is given, we can derive the value of u at every point on \mathbb{R}^2 along the characteristic curves.

When u(x, 0) is given, we can just determine the value of u on the domain $\{(x, y) : y - \frac{1}{2}x^2 \le 0\}$ uniquely along the characteristic curves. While on the domain $\{(x, y) : y - \frac{1}{2}x^2 > 0\}$, the solution cannot be determined by the auxiliary condition.